Dual closure operators and their applications

نویسندگان

  • D. Dikranjan
  • W. Tholen
چکیده

Departing from a suitable categorical description of closure operators, this paper dualizes this notion and introduces some basic properties of dual closure operators. Usually these operators act on quotients rather than subobjects, and much attention is being paid here to their key examples in algebra and topology, which include the formation of monotone quotients (Eilenberg-Whyburn) and concordant quotients (Collins). In fair categorical generality, these constructions are shown to be factors of the fundamental correspondence that relates connectednesses and disconnectednesses in topology, as well as torsion classes and torsion-free classes in algebra. Depending on a given cogenerator, the paper also establishes a non-trivial correspondence between closure operators and dual closure operators in the category of R-modules. Dual closure operators must be carefully distinguished from interior operators that have been studied by other authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS

An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.

متن کامل

M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS

In this paper, the notion of closure operators of matroids  is generalized to fuzzy setting  which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...

متن کامل

Ordered Weighted Averaging Operators and their Generalizations with Applications in Decision Making

The definition of ordered weighted averaging (OWA) operators and their applications in decision making are reviewed. Also, some generalizations of OWA operators are studied and then, the notion of 2-symmetric OWA operators is introduced. These generalizations are illustrated by some examples.

متن کامل

From torsion theories to closure operators and factorization systems

Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].

متن کامل

Categories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies

Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014